

Optimal Sensing Strategy Using Spatially Averaged Advection-Diffusion Parameter Estimation Andrew White, Jongeun Choi, and L. Guy Raguin

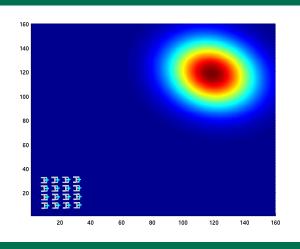
Motivation

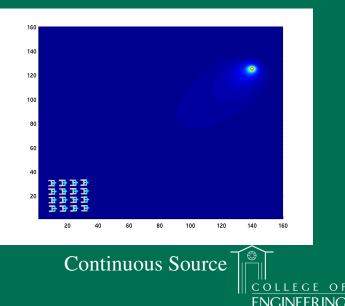
Develop an algorithm to estimate the parameters of an advection-diffusion process using mobile sensing agents for applications such as:
Environmental monitoring
Harmful algal bloom tracing

• Chemical plume tracing

Algorithm

- Each mobile sensing agent takes noisy measurements of the concentration field at its current location.
- Each mobile sensing agent shares its measurements with the leader agent.
- Nonlinear linear least squares method is applied to the collected measurements to estimate the parameters.
- The sensing agents are then driven in the direction that increases the quality of the estimated parameters.





Advection-Diffusion Process

- The concentration field considered corresponds to a closed-form solution of a simple advection-diffusion process.
 - Two advection-diffusion processes are considered

Advection-Diffusion Process

- Impulse Response Function $C(x, y, t) = \frac{C_0}{\sqrt{(4\pi)^3 (t - t_0)^3 (D_{xx} D_{yy} - D_{xy}^2)}} \exp \left\{ -\frac{1}{4(D_{xx} D_{yy} - D_{xy}^2) (t - t_0)} \right.$ $\times \left[(\vec{x} - \vec{x_0} - \vec{V}(t - t_0)) \right]^{\mathsf{T}} \left[\begin{array}{cc} D_{yy} & -D_{xy} \\ -D_{xy} & D_{xx} \end{array} \right] \left[(\vec{x} - \vec{x_0} - \vec{V}(t - t_0)) \right] \right\}$ Goal: Recover $\theta = \left[D_{xx} \quad D_{yy} \quad Dxy \quad C_0 \quad x_0 \quad y_0 \quad t_0 \right]^{\mathsf{T}}$
- Continuous Source

$$C(x,y) = rac{q}{2\pi K d_s} \exp\left(-rac{U}{2K}(d_s-\Delta x)
ight),$$

where

ENGINEERING

$$d_s = \sqrt{(x_0 - x)^2 + (y_0 - y)^2},$$

 $\Delta x = (x_0 - x)\cos\theta + (y_0 - y)\sin\theta.$

Goal: Recover $\theta = \begin{bmatrix} K & q & x_0 & y_0 \end{bmatrix}^{\top}$

ENGINEERING

Gradient Control Strategy

- The advection-diffusion process parameters are estimated by utilizing nonlinear least squares optimization on the collected measurements.
- To quantify the information that the concentration measurements carry about the unknown parameters the Fisher Information Matrix is used

$$\mathcal{I} := \frac{\Sigma(\theta^{\star})}{\sigma^{2}}, \text{ with } \Sigma := \sum_{i=1}^{n} C'(\mathcal{Q}_{i}, \theta^{\star}) C'(\mathcal{Q}_{i}, \theta^{\star})^{T}$$

where $C'(\mathcal{Q}_{i}, \theta) := \left[\frac{\partial}{\partial \theta_{j}} C(\mathcal{Q}_{i}, \theta)\right]_{j}$

ENGIAERING

Gradient Control Strategy

- Since the true parameter θ* is not known, the current estimates θ̂ are used to compute *I*.
- To improve the quality of the parameter estimates $\hat{\theta}$, the determinant of \mathcal{I} is maximized.

$$\mathcal{J} = \det \mathcal{I} = rac{1}{\sigma^2} \mathrm{det} \Sigma$$

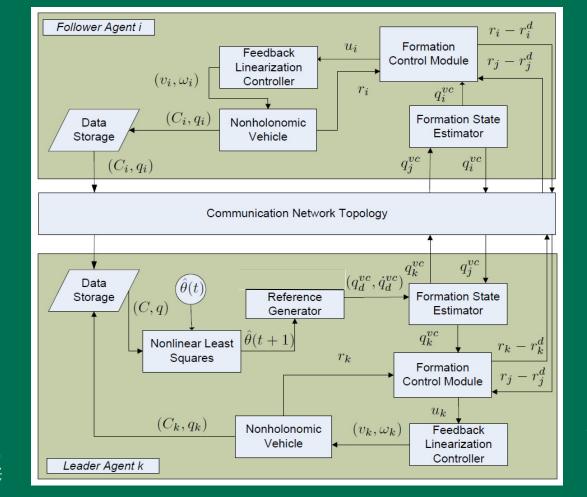
• The objective function \mathcal{J} is maximized by steering the sensing agents so that they climb the gradient of \mathcal{J} with respect to \vec{x} .

$$\frac{\partial \mathcal{J}}{\partial \vec{x}} = \sum_{ij} \left(\frac{\partial \mathcal{J}(\Sigma)}{\partial \Sigma} \right) \left(\frac{\partial \Sigma}{\partial \vec{x}} \right)_{k}$$
$$= \sum_{ij} \left(\det(\Sigma)(\Sigma)^{-T} \right) \left(\frac{\partial \Sigma(\vec{x})}{\partial \vec{x}} \right)_{k}$$

ENGINEERING

Gradient Control Strategy

• The gradient control is then defined as


 $\dot{q}_d^{vc} = \left\{ egin{array}{cc} v & ext{if } \|v\| < v_{sat}, \ rac{v}{\|v\|} v_{sat} & ext{if } \|v\| \geq v_{sat}, \end{array}
ight.$

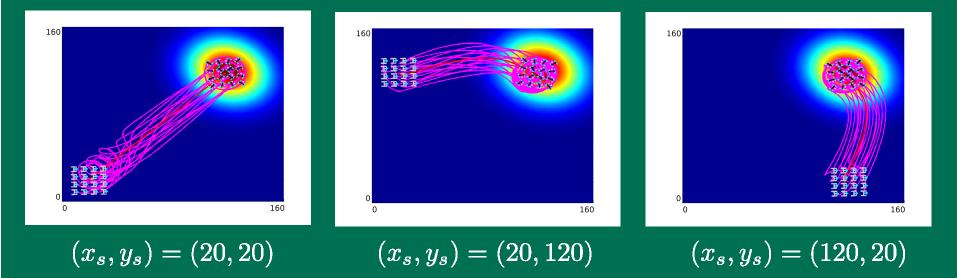
where $v = \varepsilon \frac{\partial \mathcal{J}}{\partial \vec{x}}$, v_{sat} is the saturation velocity and $\varepsilon > 0$ is a gain.

Flow Chart of Optimal Sampling Strategy

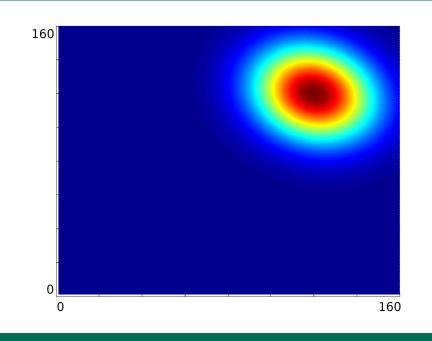
MICHIGAN STATE

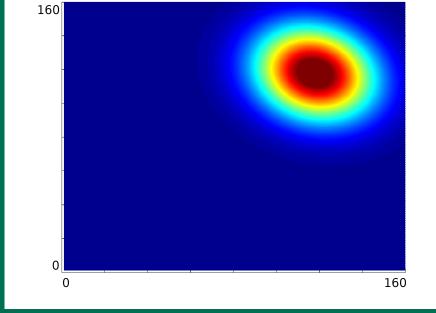
NGI-NEERING

Ē

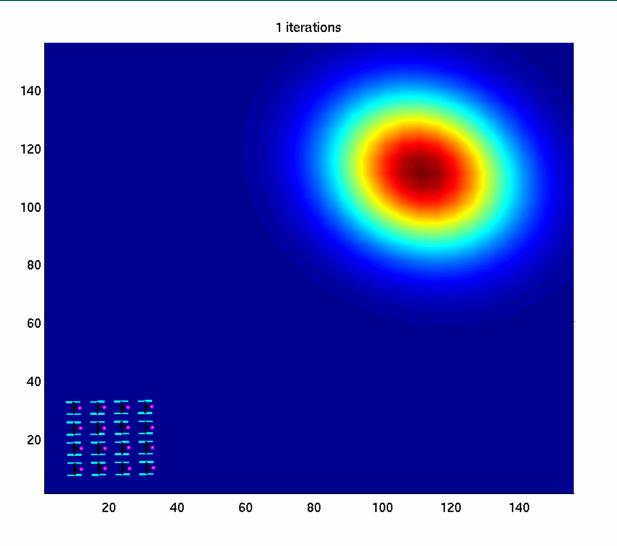

Table of parameters used in the impulse response simulation.

Parameters	True Values	apriori Values	Estimated Valu (20, 20)	es with starting $(120, 20)$	$\begin{array}{c} \text{position} (x_s, y_s) \\ (20, 120) \end{array}$
$D_{xx}\left(\frac{m^2}{s}\right)$	0.07	0.084	0.0699	0.0703	0.0702
$D_{yy}\left(\frac{m^2}{s}\right)$	0.07	0.084	0.0697	0.0703	0.0702
$D_{xy}\left(\frac{m^2}{s}\right)$	-0.01	-0.012	-0.0099	-0.0101	-0.0101
$C_0 \left(\frac{kg}{m^3}\right)$	5.0×10^6	6.0×10^{6}	5.0043×10^6	5.0149×10^6	5.0124×10^6
(x_0, y_0) (m)	(80, 80)	(1,1)	(79.93, 79.89)	(79.93, 80.08)	(80.03, 79.95)
t_0 (s)	30.0	36.0	24.2717	30.2394	29.4507


Figures of the sensing agents starting at three different positions.

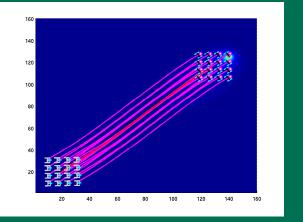


Comparison of the true and estimated concentration fields.

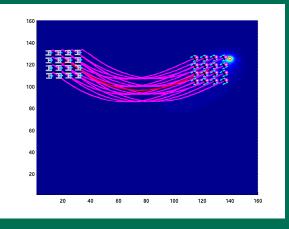


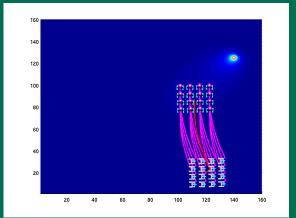
True Concentration Field

Estimated Concentration Field


Table of parameters used in the continuous source simulation.

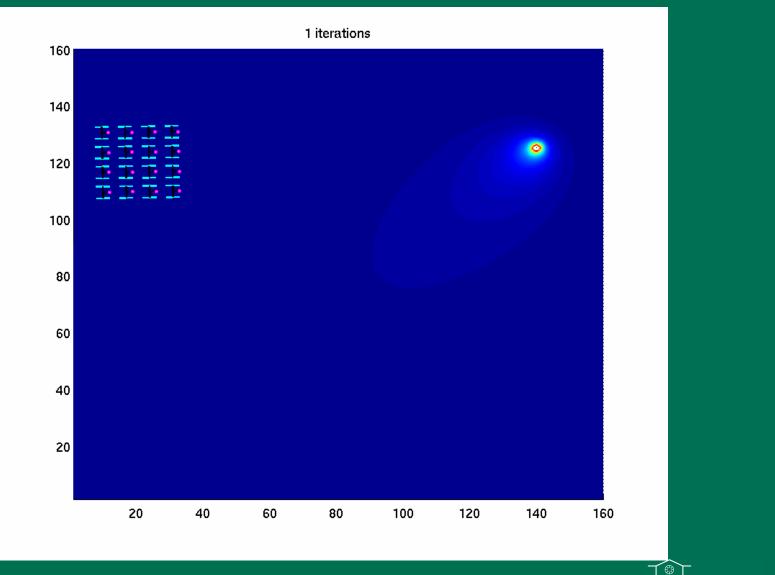
Parameters	True Values	apriori Values	Estimated Valu (20, 20)	tes with starting p $(120, 20)$	$\begin{array}{c} \text{osition} (x_s, y_s) \\ (20, 120) \end{array}$
$K\left(\frac{m^2}{s}\right)$	50.0	60.0	228.54	1000000.0	68.75
$q\left(\frac{m^2}{s}\right)$	5000.0	6000.0	17877.52	69315759.6	6018.19
(x_0, y_0) (m)	(140, 125)	(1, 1)	(138.86, 124.46)	(121.41, 122.51)	(139.51, 124.84)




Figures of the sensing agents starting at three different positions.

 $(x_s, y_s) = (20, 20)$

 $(x_s, y_s) = (20, 120)$



 $(x_s, y_s) = (120, 20)$

MICHIGAN STATE

| ||| | <u>college of</u> ENGINEERING

Questions???

